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DYNAMICALLY STABLE PRINCIPLES OF OPTIMALITY .
IN COOPERATIVE DIFFERENTIAL GAMES ON QUICK ACTION OPERATION

N.N. DANILOV

The class of cooperative differential games on quick-action operation is
determined, and the principles of optimality in it and questions of
existence of solutions are, considered. A superadditive characteristic
set which is the analogue of a characteristic function in a cooperative
game is constructed. The.-concept of sharing and of sharing predominance
is introduced. The principle of dynamic stability is defined in a
cooperative game on quick-action operation. The theorem on the existence
of a dynamically stable c-nucleus is proved. The application of the
proposed treatment of games of group pursuit onquick-action operation is
considered.,

1. Statement of the problem. The differential game of n players with dependent
motions is considered. The dynamics of the game are defined by the set of equations

T =f@uy .., 2E R, & U;C R™ (1.1)

2 (t) = 2 (1.2
where U, is a compact set of control parameters of the i-th player.

The admissible control of the i-th player is any measurable function u; () that satisfies
in [t,, ) for any t the condition u; ()= U,.

It is assumed that system (l1.l1) has a unique solution z (-) continued in the half-interval
[t,, 0) for initial data z,& R™ and any set (u; (%), ..., U, ()) of admissible controls.
Moreover we assume that the vector function f=(f,..., fm) on the right side of (1.1l) can be
represented in the form f(z, Uy, ... Us) = f (z, 1) + ... + (7, un).

As admissible strategies of players we shall consider the piece-wise programme strategies
(PPS) . The (PPS) of the i-th player will be denoted by u; () and the set of its (PPS) by D,.

The game begins at the instant ¢, from the state gz, The terminal sets M,,... M, are
specified in the phase space R™. Let (u; (‘). Un(:)) be some admissible situation, and
z(:)=x(-y Zo» Uy (*)y - »«» Un (+)) Dbe the trajectory of system (1l.1)—(1.2) corresponding to that
situation.

Definition 1. We call Ty = T; (xg, U(:), - . . Un (-)) the frist instant when the phase point
reaches the terminal set M; in the situation (¥; (+), ..., U, (:)), if Ty=min{t > t, |z (t) =M,).

Assumption A. The set of admissible situations Dy =D, X ...X D, is such that for any
ordered sequence My, ..., M, , the instants T,,..., T,;, exist and are finite.

Player i is interested in the phase point reaching the terminal set M; in the shortest
possible time, i.e. he aims to minimize the quantity

Ji(Toy Upy o v o Up) = Ty (20, Ugsy « + oy Ug) — B (1.3)
Thus, the differential n-person game on quick-action operation has been defined in the
normal form T (zy) = <xs Dy, .. ., Dys Jy, .. ., JD.
2. The characteristic set. We denote by N = {1, ..., n} the set of all players

in the game T (z,). Any subset S (C N, including the empty set {J and the set N itself, is
called a coalition. Let the condition § C N be formed. This means that members of the

coalition S act as a single player with the set of strategies Dg= H D; which aim to minimize
ics

the quantity J; for all i §.

The vector J = (Jy, ..., Jp), vhere J; is the time taken to reach the terminal set M, from
the initial state z, (see (1.3)) is called the payoff vector. For each coalition S & 2N ye
denote by V (S, z,) the set of all payoff vectors in the game I (z,), whose respective components
the coalition S can guarantee to its members irrespective of the behaviour of the remaining
players from the set N\ S ={i& N |ie¢ S}, including the case least favourable for S, when
the coalition N \ 8§ works against it. The set V (S, r,) is the characteristic of the potential
force of coalition S and is the basis of the definition of a cooperative game. Let us now construct
the sets V (S, z,), S = 2N,
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For the empty coalition {J we assume
VI, 2 = @ 2.1)
Let SC N (S (J). We fix the instant of time 1 >1t,, and consider the set of antagonistic
differential games {I's¥ (zp, T — %) | ¥ = R™} with a fixed duration v —f, between the coalitions
S and N\ S. The dynamics of the game I's? (z), T — ;) are described by the equations

z° = f (z, ug, un~g), z (to) = z, (2.2)
us llU,, uwae Il U;
te JEN\S
Mha nauvnffe F he mawvimizing nl aver h:a +ha £~ K {~ ale o wmn o fa)
<1l PayCILLI s <€ MAXIMIZING pLayeXr anda TNe IoXm i (Ppy Us, “'N\SI = —p ‘.p \(.,, y,, wiiere I (T
is the solution of syst (2.2) at the instant 7, and p is the Euclidean distance. The payoff

of N\'S is equal to K. The value of thegame I's¥ (z,, T — 2;) /2/

val Ig¥ (xy, v—fo) == sup inf K (xo,us(-), unns ()=
ug(-X=Dg un\ g )EDN\ 5
inf sup K (xo, us(-), uns(-))

“N\H( YEDN\ g us(' }=Dg

exists in the class of PPS.
Consider the set
YE" (z)) = {y = R™ | val Ts¥ (2o, T — £,) = 0} (2.3)

As implied by the value of game Tg¥ (2, T — t,), for point ye& YE™ (z¢) and preassigned
e >0, the coalition § can guarantee the approach to y in a time 71—, to a distance not
exceeding e.

Let m be the transformation of every player i in =i and by the same token of each
coalition § = {ij, ..., i} in the coalition =S = {ui,, ..., nti,}. Each sequence {M,, i S} of
terminal sets arranged in the order in which they reach the coalition S, generates a trans-
formation in the coalition S itself. Let the sequence
M;, ..., M;, where fx=mh,k=1,...,5s (2.4)
correspond to it.

Let T;‘Z be the first instant of the set M, is contacted by the set YE"' (x¢) as 1 increases,
i.e.

Ti:min (T Y5 (xo) N My, O}

If Y5 (o) N My, = (3, v > to, we assume that T3 is equal to + so. To simplify the further

calculations we shall make the following assumption.

Assumption B. When T, = Tg is finite, there exists a unique point z; = x (T,) of firxst
touching of the sets Y§™ (z,) and M,
Then, similarly
Ty==min (t| Y5 (z1) N M;,5= D}, ...
T,=min {T[Y;'TH (sm) N M, 5 O3}

1£ Ty = + o0, then T; =+ co for all I=£k+41,...;s. This means than when “going around"
the terminal sets in accordance with the transformation =, the sets M, M, .... M, are
not reached by coalition S. We thus obtain for n the sequence Tﬁ <... < T,s. or, which is the
same, the sequence Tﬁ;, <. -K Tf.{ of instants of reaching the sets (2.4).
We introduce the s-vectors T% = (TS, ..., Tﬁ.'_!), and ¢4 = (tp, . .., ¢,) and assume
V(S z) = {Th — t, [nE ng}, SCN(§~Q) (2-5)

where ng is the set of all transformations of the terms of coalition S. The quantity T‘?:i,‘ — 1y

(the X-th component of the vector TIz® — t,) has the meaning of the time of reaching the set
M, (ix = 8) by the coalition S under conditions of transformation =n. Note that for SC N V

(S, zo) is a subset of space R’ and its power equals sl, where s is the number of players in
coalition S.

Let 1 be some s-vector. If EES V (S,z) and m, > & for all iE S, we shall assume that
ne V (S, z). We define the inclusion ( as follows. If for any ne& A4 there exists a te
V (S, z), such that 1, > &, i< 8, then AT V (S, zo)-

et S, RC N, S R = (). Let us consider the direct product

V (S, 20) X V(B zo) = {8, M) |EE V (S, 2o}, n E V (R, 2o)}
which is a subset of space R*", where s(r) is the number of players in § (R). The advantage of



the coalition § ) R over the coalition § and R, if it exists, can be shown by the relation
V(S U R, 2 SV (S, zp) X V (R, o) (26

If (2.6) exists for all §, RC N, S} R = ¢, we shall call the set V (S, 2z, super
additive with respect to S.

Lemma 1. The set V defined by (2.1) and (2.5) is superadditive with respect to S.

Proof. The sets V(SUR,z) and V(S,z) X V(R,z,) are subsets of one and the same space
R*' hence the relation 5 between the two is determined correctly. Moreover, it is evident
that (s+ ! >sl ! and =g X ny Cngyr + where TsUR is the set of all transformations in S| R.

We set S={i,...olsy R=1{jy,...,Jr}. Let E&V (S, 2) X V(R z) which indicates the existence of
transformations ¢ &ng and ¢ eng, for which

E=(T5,—t, - Tg{. —to, Ty —to, - T@r —t)

We arrange the instants ¢, 1‘341' . Tg,’. Tg,-l, ... T8 in increasing order, and obtain the
r
sequence

W< KNG <. STyr< o 2.7
to which corresponds the sequence of points

r=2(Ty), k=1,..., 047 2.8
’(Tgi,,)v Ty =quaip

z(T,) =
R — TR
z (qu), T, = T\W'q

-
where z(78,) is the péint of first touching of the sets Y; k-1 (z (7%, ) and My,. The sequence

(2.8) induces a certain transformation Reng g With the transformation # the vector { is
transformed into the vector #E= (T, —14,..., Teor— t).

Consider the coalition S (R, and assume that the sets M;, i= S |UR are ordered (are
reached) according to the rearrangement #:

My, ..., My, 2.9)

We will put n=(rfUB_y, ., 7SUR_ ) where 7rSUR js the first instant, when the set

My, ke SUR is reached as a result of the transformation & To prove the lemma it is
sufficient to show that
<< REg, E=4,...,5+r (2.10)
For the transformation & the points (2.8) are generally not points that first touch the
sets (2.9), but to prove the inequalities (2.10) it is sufficient to show that the points (2.8)
will be reached by the coalition S(JR in a time not exceeding I),—t#,..., Ter — & respectively.
Let z; be an arbitrary point of the sequence (2.8). We assume that for ie S we have
= M; (for 1= R the reasoning is similar). Then by definition z; is the point of first

touching of the sets Y:"_T’f-‘ (z(Ty,) and Mi. Here Ty = T§, since zxe M; for ie S, but not always
Ty = Tf_l, since 7z, & M; is possible, where j=R. The time of conversion of the phase point from the
state =z, to =z by the efforts of the coalition § is equal to Ty — T,,,. To this time there

corresponds a pair of e—optimal strategies (af (), afy. s (+)) of the game I‘;" (zy—yr Tk — Ty (see
(2.3)).
Consider now the game Tghp (2., T5Y% — T§4YR), where T§UR — rSUR ig the time of conversion

of the phase points from the state z,, to the state z by the efforts of the coalition S R.
The following inequality holds:

Ty — Ty > TPUR — TSUR (2.11)
Indeed, let us construct a strategy "éun(') = {85 (-), a}.g(")lg}, where i%(.) is the e-optimal
strategy of the coalition S in the game Tg* (z,,, 7% — I%,), and a%. () |z is the truncation on

R of the e-optimal strategy of the coalition N\ 8§ in that game. It is obvious that
uQUR(-)e Dgyp and that, applying this strategy, the coalition §|J R transforms the phase point
from the state =z,;, to the state zx in a time not exceeding 7T, — Ty.,- Moreover, applying the

strategy i z(-), which is e—optimal in the game r;’{m (24-y, TSUR — r3UR), the coalition SUR

transforms the phase point from the state =z,, to the state z in a time T§UR — r§UR not
exceeding Ty — Ty,
From (2.11) with k=1 we obtain

Ty — o> TSUE g (2.12)



i.e. n, <# From (2.11) with k=2, using (2.12), we obtain 75URg 71, i.e, n, <7, Continuing
this for k=3,...,s+r, we obtain (2.10). Then, since ne V(S R, z,), it follows from (2.l0)
that @& =V (S R, 7). Because of the arbitrariness of the transformations of.¢ and ¢, that
generate the transformation #, we obtain that §= V(S U R,z). Hence relation (2.6) holds.

The superadditive set V is called the characteristic set. The determination for each
coalition § & 2N of the characteristic set V (S, z,) means the determination of the cooperative
game Ty (xy) = <N, V (S, 25)>. The aim of players in the game Iy (z,) is to minimize the time
taken to reach the terminal sets; hence we call the game [Ty (z,) the cooperative differential
game on quick-action operation.

3. The nrincivple of dvnamic stabilitv of golution
tabiliit iutior

<. C plaliCly Ly eaGanat. J Vi o

o
S B
we introduce the concept of sharing and of predominance of sharing in the game

Definition 2. BAny vector Ee& R", that satisfies the conditions: 1) for all i= N we
have E<V{i},x): 2) Ee V (N, z4), is called the sharing in the game Iy (z,).

We denote the set of all sharings in the game Ty (z,) by Ey (r,). It is clear that. Ey (z,) C
V (N, z).

Let §& Ev (20), and E¥ = {{;, i S}, i.e. I is an s-dimensional vector composed of com-
ponents of sharing & that correspond to S.

e e

Definition 3. We say that the sharing § predominates over the sharing 7 by the coalition
S(E>sm), if 1) for all i S we have & <m;, and 2) ¥ V (S, z,). We say that the sharing
t predominates over the sharing 7m (§> m), if a coalition S C N is found such that & >gn.
Predominance is not possible over coalitions consisting of one player. Actually from &1
it follows that m; >V ({i}, z,) which is impossible (see Definition 2)). Note that predominance
over N is possible.

Predominance in the sense of Definition 3 can be used to define the c~kernel, the NM
solution and other concepts of the solutions of the game Iy (zy)), as is done in classical
cooperative theory /3/.

Let Wy (z,) C Ev (zo) be some solution of the game I'v (z;) determined for the state =z,
Each sharing & = (&, ..., &) represents the time of reaching in some definite way the ordered
sequence M;, ..., M; of terminal sets. Consequently, to each sharing e Ey (r,) there

corresponds a trajectory « (.) of system (1.1)—(1.2) such that § = Tf: (z (+)) — 2o, where TiNk (N
is the instant of reaching the set M, , when moving along the trajectory x (-).

Definition 4. Let Wy (z,) # (J. ~We shall call any trajectory z () of system (1.1)—(1.2)
such that [TV (z (. )) — ¢l = Wy (q;“) the conditionally optimal trajectory. Here TN (z(.))— ¢, =
(TR @ () = toy « oor Ty (Z (+)) — t0)-

We will now formulate the principle of dynamic stability in the game Ty (z,). Note that
for cooperative games with transferable payoffs the concept of dynamic stability was introduced
in /i/, and for games with non-transferable payoffs in /4, 5/.

Consider the games in progress Iy (Z(t)) and their solutions Wy (z (¢)) C Ev (Z (t)) along
the conditionally optimal trajectory z(-) Let ! & Wy (2 (). The component & of the sharing
t' is the time taken to reach the set M; from the state Z (f) when je N. It will be
seen that ! =0 for all i such that ¥ (2 (- »<t. we put T = max TN (z ().

Definition 5. Suppose E& Wy (zp), and 7z (-) is the conditionally optimal trajectory
such that TN (z (-)) — ¢, = &. The sharing { is called dynamically stable, if Wy (Z (?)) 5= O
far 211l . <t T and
for all (LI T, and

te N @)+ Wy (o)
. <t<T
TO=@® - nt®; u@=nn{f,t—%} ieN
In this case the conditionally optimal trajectory is called optimal.
The solution Wy (z,) is called the dynamically stable solution of the game Iy (zo), if
1l shar

t = W. (r\) are dvnamicallv stabhle

=3
1gs &= Vv Ty &¥e aynamlcally stanie.

ing:
In Defi m.tlon 5 the sum < (f) + Wy (Z (1)) is a set of vectors of the form 1t (f) + t' where
Z (£)). Consequently, for the dynamically stable sharing & & Wy (z,) a shar:.ng e

be found at every instant of time t= ¢, T] such that 3 —'rH\ -+ F

an
an oe ung at every insStant Cr time &= gy £ 1 onac

The principle of dynamic stability is the principle of real:.zabllity of sharing in the
differential game. It has the important property that the agreement reached by the players

at +ha hasi dnea of +ha o P =Ye? ReTe ] ey 4 3 rmi
at the beginning of the game regarding the seguence and time of reaching terminal sets (sharing

t = Wy (z¢)) is maintained till the end of the game, when moving along the optimal trajectory,
in other words, it will be realized.

4. The dynamically stable ec-kernel. 1In what follows we shall understand the set
Wy (r,) to mean the c-kernel of the game T¥ (xo) , and shall denote it by Cv (.zo).



is called the c-kernel of the game Ty (z,).

Definition 7. The game Iy (z,) is called N-substantial, if for all SC N (S% N) and
©>1t, and the equation Y%"(zx)) (N M; = is satisfied for at least one i S.

Definition 7 and Assumption A imply that in the N-substantial game the terminal sets are
reached only when the maximal coalition N is formed.

Theorem 1. In an N-substantial game Iy (z;) a non-empty c-kernel Cy (z,) exists.

Proof. It follows from Assumption A that the set E, () of sharings in an N-substantial
game is non-empty. Let E,EEEV (z,) We assume the existence of the coalition § (S N), such
that E>E Then E,<f for allieSandf e V(S,z,) (see Definition 3). By the definition of

8

the N-substantial game for all neV(S,z) and 1n;=+ o for at least one i=S§. Since §“§<°<,
for all ieS, in V($, s) does not contain a single vector 4 such that n,<E§ for all ie S,
i.e. ¥« V (S, %), and, consequently f cannot predominate over E in the coalition S. Consider
now the coalition N. Two cases are possible 1) not a single sharing § e Ey(z) domainates
over N and 2) a sharing exists which is domainted by N. In the first case Cy (o) = Ey (%). In
the second case at least one sharing exists that is not dominated by the coalition N, and

Cy (z)) C Ey (z,). Thus the c-kernel is in both cases non-empty. The theorem is proved

With the notation domwEv (z¢) = {E = Ev (z,)l, we have N & Ev (7o), n >~ &}, Ev (2 \

domnEv (z5) = {§ € Ev (2o)| § & domnEy (%)}
Corollary. 1In an N-substantial game Ty (zy) Cv (z,) = Ev (x,) \ domy Ey (z,).

Theorem 2. 1In an N-substantial game TI'v (z,) for each conditionally optimal trajectory
z (), all current games Iy (% (f)) are N-substantial, then all c-kernels Cy (z,) are dynamically
stable.

Proof. Let the sharing &= (i, ..., &), where &i= T?; — = 1'.;”,r F()—t.k=1,..., n belongs
to the c-kernel. The oxdered sequence Mi,..., Mi, corresponds to sharing & such that &; is
equal to the time of reaching the set Mj; by coalition N along the conditionally optimal
trajectory z(-).

N-—
The points 5(1"{),...,2(1‘{";‘) are the points of first touching of the sets y:i. 1, @ -
-, N
Yyr il (ry ) and the sets  Mi,..., Mi,
-

TN_ N_,
Consider the time interval [4, TF]. Since for all f<t< T?l' we have Y} t(z' (t))cY:,g "(zo)
a2 v e @), wn V) is the uni int of touching bet Ti-h 4
an (I =Yy ), where Z(Ty) is e unique point o ouching between Yy (=) and My
(see Assumptions A and B), hence the point E(T?") remains the unique point of touching between

N_
the sets Y;‘n t(.i (1) and M; for all t, <t Tﬁ. Since by the condition of the theorem the game

Iy (2(0), te 4, Tf:’] , is N-substantial, the sharing §!'= {T{:— t, k=1,...,n} Dbelongs to the c~
kernel Cy (#(t)). From this
E=[t—t)+E1e€Cy @), to<t<T (4.1)
t=( ..., t)y to=1(t, . . -, 20)
CAGRLN Q007
n n

At the instant t= 2'9" we have §:l=0.

Consider now the time interval [TV, Tﬁl. We similarly obtain that the inclusion (4.1)
holds, where tte €y (z(1)) and g, =0 for all > T{“’, and at the instant := Tﬁ also & =0.

From this it follows that

e N [F@O+Cy o]

te<t<r]]

(t—to, ..., t—tg), <ty

———r
n
N N N
)= (TN —to, t—to, ..., t —to), Yty
n—t
(TN g, TR —to, t —to, ..., t —t)), t=TF
W—d

n—g

Continuing this reasoning to the instant T{v. we obtain
n

te N [@O+Cp@N

tSIST;
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where () = (1, (), ..., % ($)), T () = min {§;, t — &}. The theorem is proved.

5. The game of group pursuit on quick-action operation. The method outlined
here is used below to determine and investigate the cooperative differential game of four
players on quick-action operation in a formulation close to problems of simple pursuit /6/.

The game between the pursuers P;, P, and pursued E,, E, occurs in a plane. The players
move at constant velocities (a; for P; and B; for E;) and can change the direction of motion
at any instant of time. The motions of the pursuers are dependent and defined by the equations

2 = ut 4w, 2= Ul ow? (5.1)
@+ @ =a i=12 (5.2)
The equations of motion of the pursued players E, and E, have the form
yt=uv! ¥ =v’ (6.3)
=1, 2% =yt (5.4)
M+ @ =87 j=1,2 (5.5)

Thus u; = (u;}, u;?) is the velocity vector of the pursuers P; and v; = (v, 1) of the
pursued player K;, and at each instant of time the position of the pursuants is represented
by a single point z = (z!, z?), and the position of the pursued E, and E; by the points y =
(¥}, ¥ and z = (7!, s?) respectively. The motion of the players begin at the instant ¢, =0
from initial positions

z (t0) = Zo, Y (to) = Yo, 2 (to) = 2 (5.6)
that do not lie on one straight line.

The state of information in the game is as follows. At every instant of time the pursuer
P; xnows his position and the position of player E,; and the direction of his velocity. The
pursued player E; knows his position and has information on the position of player P;.

Let us determine the strategy of the players. The pair (4, u?"), where A; is some

partitioning tff =0 <t} < ... <f{f<... of the half-interval which does not contain finite
concentration points, and u?‘ is any vector function that has values in the circle (5.2) is
called the piecewise constant strategy PPS of player P;. Similarly the PPS of player £, (E,)
consists of a pair (o, 1% ((n, v,#)), where o (u) of some finite partitioning of the time interval
[0, ) that has no finite concentration of points, and v, (v,*) is any vector function that
has values in the circle (5.5) for j=1 (j =2). .

The strategy PPS (A, u1®), (A, ue?), (0, 1%, (p, v#) will be denoted simply by uy, U U, Uy
The programme controls u, (t), u, (t), v; (), v, (f), 1if they are chosen in the class of piecewise
constant vector functions. These controls are called programmed strategies.

Let z (-, &g, ¥y, U ¥ (++ Yor 1)y Z(+, %, V) be the trajectories of system (5.1), (5.3), and
(5.4) in the situation (u;, u,, vy, v,) that start from the initial states (5.6).

We ¢all T, = T, (xg, Yo; U1, Uy, v;) the instant of encounter of players P, and E, with
strategies (u,, u,, v;), if

T, =min {t > & |z (t) =y (1)} (6.7

and T, = Ty (zo 29 U1y Ug, V) the instant of encounter of players P, and E, for strategies
(ulv Uy vz)v if

T, =min{t > ¢, |z (t) = z ()} (5.8)

If a time t> ¢, such that z(f) =y () (x (f) = z(f)) does not exist, we assume T (%o, Yoi U1,
Uy, V1) (Ty (Zoys Zos Uy, Ug, ¥;)) to be equal to ~+ oo, If T; and T, exist and are finite, we call the
point z (7)) =y (T)) (= (Ty) = z(Ty)) the point of encounter of players P, (P,) with player E, (E,)
with strategies (uy, g, ¥y) (U1, Ug, Vs)).

Player P; is interested in encountering player E; in the shortest time, i.e. he tries
to minmize T,. Player E; tends to prolong the time of encounter with P,

Thus, the four-person on quick-action operation in standard form which we denote by the
symbol T (2, Yo, 2) has been defined.

We will consider the case of cooperation between the pursuers and determine the character-
istic set V of the cooperative game in conformity with the principle of constructing set
(2.5). We shall call the set P = {P,, P,} the coalition of pursuers. The strategy of coalition
P is a vector function of the form u = (u;, u,) whose components have values in the circles
(5.2). The coalition aim is to minimize the components of the vector T = (T,, I,).

We put o = a; + a3 From (5.1)—(5.5) it follows that if a <P, (@ <Py, then T, =+
oo (T = + o0), since in that case the player £E,(E,) running away along the straight line that
passes through points z, and y, (z) can always avoid an encounter with P, (Py). We shall
therefore assume that

o > max {f;, B} (5.9)

For any programmed control v;(t) of players E; there exists a unique constant control



Z = (@,, @;) of player P which guarantees to him an encounter with E; in minimal time /6/. Such
control prescribes to him the motion along a beam directed to the point of encounter. Control
i is called the quick-action to the point of encounter with E; A parallel approach to player
E; (the II-strategy) is called the method of pursuit by the coalition P of player E;.
The control of the coalition P is identical with the control which guarantees the quick-action
operation in reaching the point of encounter with E; We denote the II;-strategy of coalition

Pby uY= (ulni, uaHJ').
We shall call the strategy ull = (4,7, u,//) of coalition P the Il-strategy, if it assigns
to player P a parallel approach first with the player E, (E,), and then with the player E, (E,).
Note that the state of information in the game T (zy, y,, 2,) allows the coalition P to use
the II-strategy.
We construct the characteristic sets V (S, %y, ¥o» 20)» S C P. To construct the characteristic
set V (Py, o, Yo) we shall consider the antagonistic game T[p/g, (zo Yo) between P, and E, in
which the player P, aims at minimizing the time of encounter with E,. By Theorem 5/ (/6/ p.27)
there is an optimalll-strategy for P; and an optimal programmed strategy for E,

ot =BT Ly 0] = (20, Yo) = [t — et — (ot — w1

Yo— 2| *
Since the strategy v,* assigns to player E, to run away from P, along a straight line
which passes through the points z, and y,, the optimal II-strategy of player P, is the same
as the strategy of linearized pursuit, i.e. the pursuit is along the straight line of escape

of E,. Therefore a generalized value exists (see Theorem 4 in /6/ p.25).

P (zo, yo)

val T'p /5, (%o, Yo) = a — o3 — Py

We assume that V (Py, zy, yo) = p (z0, Yo)/ (@ — @3 — P;) (see (2.5)). Similarly we obtain V (P,
Zoy Zo) = P (Zor Zo)/ (@g — &1 — PBy).

Let us calculate the characteristic set V (P, z,, ¥o, %) on the assumption that the coalition
P uses the II-strategy. The sequence of pursuit of players E, and E, by coalition P is
determined by two transformations m; = {E,, Eg}, and a1, = {E,, E,}, i.e. the set of all trans-
formations in P is zp = {m,;, 1,}. In carrying out the pursuit in accordance with the trans-
formation =n; the player E, moves along the straight line passing through the points s and
z,, where s is the point of encounter of P and E; (the optimal programmed strategy of player
E; on the quick-action game Tz, (s, z,)). We denote that strategy of player E, by 7y (s).
The locus of the points {s = (s}, s?)} of encounter of P and E; in motion with velocities « and
By, and using the coalition P is a cirxcle /7/. The Il,-strategy is a circle of Apollonius
A1‘°:

—_ 1 —
(o0 — DU (o0 — =Bt (0 o0, )

Let us determine to which point § of the circle A;# E, must move to obtain the maximum
time of encounter with P. As shown by Shiryaev /6/ the point § is the solution of the problem

max (|l zo — sl + 1l s — 2zl )

=4,

Hence player E; under conditions of transformation mn;, must move in the direction of the
point § = (51, §%). We denote this strategy of E, by 7,.

Lemma 2. 1f the order of pursuit of players E, and E, by the coalition P is determined
by the transformation n; = {E,, E,}, then for any v, and vy, from (5.5) the inequalities

TE = T (x0, yo; &1, 71) < T (2o, yo3 3T, 1)
TE — 15 (,, yo, 20; &1, 71, 73) << TE* (20, Yo, 20; 4T, 71, vs)

are satisfied. Here &M is the Il-strategy of the coalition P which assigns to him a parallel
approach, beginning with E, and, then, with E,; 7, = 7, (§). TZ; denotes the instant of encounter
of the coalition with player E,.

The proof of Lemma 2 is similar to the proof of the corresponding inequalities in /6, p.
61/.

Consider now the transformation =x%,. By analogy we establish that player E; moves along
the straight line passing through the points s and y, in the oppositve direction of s, where
s is the encounter of P and E;. We denote this strategy of player E, by U, (s)). Player E,
moves towards the point § = (8!, ) (the strategy %, of the circle of Apollonius Ak

R R = A N,



max (|zo—s [+ s~ =]z —Ff+ "=l
ssAy
Lemma 3. If the order of pursuit of players E,and E; by the coalition P is determined
by the rearrangement n, = {E,, E,}, then, for any », and vy, from (5.5), the inequalities

T5 = T% (20, yo, 203 T8, 01, vs) < T (20, o, 207 B, v, Dy)
TE — E® (o, 203 71, By) < T (wo, 203 B, v3)

are satisfied, where I is the Il-strategy of coalition P which assigns to him, first, a
parallel approach to E, and, then to E;; 7, =7, (§). The instant of encounter of coalition P
with player E; is denoted by T5.

Lemmas 2 and 3 show that the best means of escape for E, and E, are the following. With
the transformation x;, player E, moves to point § & A;%, while player E, moves to the
diametrically opposite a side of § (Fig.l), and with trnasformation n, player E, moves to
the point § & A4ab, and player E, to the diametrically opposite side from 5 (Fig.l). Hence

(see (2.5))
V (P, 20, Yo, 20)={(T™, T™), (T, T5
Since the strategy of players which determine the characteristic sets, assigns to them
rectilinear motions with constant velocities, the following representations hold:

TE_ 209 P (yo, 8) TE_ 78 4 £6.2)

) B ' o — Py
E_ FE. | P&EY) B__ P38 _ P35
TH=T"+ a—p ’ ™= a Ba

In these z' (y') is the position of player E,(E,) at the instant of encounter with P, and
E, (Ey) at the point §(5) under conditions of transformation m,(ny) (Fig.1). _  Since p(§,2)=
P (§9 Z9) + P(zm z')’ p (zo, zl) = ﬂﬁTE" and p (Ev ?) = p('s, Yo) +p (o !7), [J] (yo, 7) = ﬁlTE's we have

e — e,

—

~

Fig.l

PE_ P8 06, %)  PE () +06, v
a—Pg ? a—mP

where TP (T5) is the time of encounter of P with E, (E,), that corresponds to the transformation
T (ng).  Obviously

TRCTR, ThgT™ (5.10)
We shall require the following inequalities to be satisfied:
P (%o, o) P (20, 8) +p (3 o)
al—a.——ﬁ>' a—B (5.11)
P (xo, 20) P (20, §) + P (5, 20)
A — > P {5.12)

Lemma 4. Let conditions (5.11) and (5.12) be satisfied. Then the set V is superadditive
on SCP, i.e.

V (P, o, Yo, 20) D V (P1, Zos Yo) X V (Py, 24, 2) (5.13)
Proof. Since the set V (P, o, yy) X V (Py, 25, 2%) consists of a single vector

- _ P (%o, ¥o) P (o, %)
n=(m, "h)——( Phoarr el a-—al—ﬁ.)




to prove the lemma it is sufficient to show the validity of at least one of the two pairs of
inequalities

iy, 1=1,2 (5.14)

g, 1=1,2 (5.45)
It is evident that inequality (5.14) for j=1 follows from (5.10) and (5.11) and for
j=2 from (5.12). We can also show the validity of inequalities (5.15).

Theorem 3. If conditions (5.11) and (5.12) are satisfied, then the vectors & = (TE, TEy),

'§v= (TE‘, TE) represent sharings and belong to the c-kernel Cy (24 y,, z,) Of the cooperative
game IV (x4, yo, z,). There are no other sharings in the game Ty (2o, ¥y, 2o)»

Proof. Since %, Ee V (P, 2 1,2) from the inequalities (5.14) and (5.15) it follows that
the vectors f and % are sharings in the game Iy (%0, Y0 %). There are no other such vectors.
The inequality (5.10) implies that the sharings f and f do not dominate one other, i.e. they
belong to the c-kernel ¢y (=, ¥, %)

Definition 8. The trajectory Z(:) =z (-, zo 4% T (-) = z (-, 2o, u1)} of system (5.1) which
corresponds to strategy #@ (wF) of coalition P, i.e. Z () = zo, Z (T®) =3, 7 (TEs) = z* (T (4,) =

zo E(T™) =5, 7 (T%) = z**), where =z* (z**) is the point of encounter between P and E, (E,)
under conditions of a my (ny) transformation, when E,;(E,) uses the strategy 7, =7,(5) (; =
7,(5)). In Fig.l that trajectory is represented by the broken line zoSz* (z,Zz**)), itis called
the conditionally optimal trajectory.

Definition 9. If in the motion along the trajectory Z (-)(Z (-)) the sharing E (f) is
dynamically stable (in the sense of Defintion 5), the trajectory Z (-) (Z (-)) is called the
optimal trajectory.

We shall denote the trajectory of system (5.3), (5.4) which corresponds to strategy 7,(7,)
of player E, (E,) used by him under conditions of transformation zn, by F(-) =y (-, ¥ 7)) (Z(-) =
Z2(ey 20, Tg)) ¢ 1e€c F (o) = Yoo §F (TE) =5 (Z (ty) = 2o, 2 (TE?) = z*). In Fig.l the trajectory g (.) (z (-))
is represented by the segment py§ (zpz*)).

Let ¢ & [ty, TF1). Consider the game I'y (Z (t), 7 (), z (t)) beginning from the state Z (), § (t),
£ (). By definition

V(P2 ) g(e) = SELLECD

V(Ps, 2 (t), 2(t) = LEO:2 ()

tg— ty — Py
As follows from the definition of the Il-strategy &7, the segment connecting point
Z () and j(t), is parallel to the segment that connects the point z, and y,for all & [t,, TF).
Consequently the locus of the points of encounter of P and E, (the circle of Apollonius 4,

in the game Ty (2 (1), 7 (2), Z (f)) is contained inside the circle A4, and touches it as the points
§. Therefore

V(P,z(t),§(t),2(1) =&, 7Y
B __F _(pF@),5 e(z(t),8+pE ()
= &6 = (£80D, )

a—PBs

P (), 5(t) +p@E ()T (1) pe (). (t)) )

a—py Bs

= () =
where §(f) is a point on the Apollonius circle A,' such that
max (|z(8) —s@)|+|s@O—F@ON=]2&) 3O +IFO)—F )
sticAy

where E/(E,) is the time of encounter between P and E, (E;) in the game Ty (z (), 7 (2), Z (1)
under conditions of transformation =, and T, (') is the time of encounter between P and
E, (E,) wunder conditions of transformation m, Obviously

B, T <E (5.16)
We shall require that the following inequality shall be satisfied

p(Z (1), Z(t)) >2 (@, 8)+pEz0) (5.17)

as — 01 — Py a— By

We denote by § the points of encounter of Pyand E,; in the game Ipyg, (Z (t), 7 (t)). Then

PG _ Py
ay— g — P ay— 0y




1o

Since the player E; inthe game IpyE, (% (f), § (f)) attains the maximum time of encounter
with P, running along the straight line that passes through the points Z (t) and 7(t) at
constant velocity B, hence p(¥ (¢), ) > p (7 (£), 5) (otherwise E, would run in the direction of
the point §). This implies that p (Z (t), §) > p (Z (¢), ). Consequently

()5 <5 pEB, 1)<

1
= PE y)
Since
1 05 1 - -
< PEES) =5 G (1)5)
we obtain
pE(), g () > (7 (t),3)
oy —oa—fy By
The inequalities (5.17) and (5.18) show that the vector E‘ is a sharing in the game
Tv (Z (t), 7 (8), 2 (t)). From inequalities (5.16) it follows that the sharing is not dominated, i.e.
FeCv@®),g(0).20), b<tTH (5.19)
Consider now the segment [TE:, TEj] on which the vector 7' is not defined, since player
E, is already caught by the coalition P (at the instant TE: at the point §) hence the pursuit

of the escapers in accordance with the transformation m, makes no sense. Since at te [T5, TE]
we assume that p (Z (), §) = p (7 (t), §) = 0,hence the vector

(5.18)

B —(0, 22010 )

a—Ps
is a single sharing in the game Iy (Z (), 7 (), 2 (t)) and consequently,

; BeCvz®)g@)z0t), ThStTH (5.20)
The sharing E& Cy (%o, Yoy 20) may be represented as follows:

E__lt‘f‘gily ta<t<75’
T (@) + &, TRt L T™ 1=1,2
ul)=T" n@=t E=G.B)=CrE@§50),26)

(5.21)

From (5.19) —(5.21) we have

fe N [O+CrEOF0.20))

t<t<TEs
T =(u@),u@E), unE)=ninT%y5, )=t

Hence along the conditionally optimal trajectory £ (-) the sharing E_ belonging to the c-kernel
Cv (%o, Yo» 20) is dynamically stable.

Consider instead of z (+) the conditionally optimal trajectory 2% (-) assuming that in the
half-interval [t,, T%)

PE®,FE) - PEELD+eE ¥ (1)
o —ai— P > a—Pr {5.22)
(here 2 (.)(7 (-)) are the trajectories of system (5.4), (5.3)) corresponding to the strategy
b, (5,) of player E, (E,), applicable under conditions of the transformation mg Similarly we have
Ee N 0@+cvEE.FeEe)]
L<I<TE
0(¢) == (81 (2), 02 (¢)), By (t)=1, O3 (t)=min(T™, 1}
Thus the theorem about the dynamic stability of the c-kernel in the game I'v (Zo, Yo, %) is
valid.
Theorem 4. In the half-interval ¢, TE:) suppose condition (5.17) and in the half-interval
[ty, %) condition (5.22) is satisfied.
Then in the game Iy (g, Yo, Z,) & dynamically stable c-kernel Cy (Zo, Yo, 2o) = {(TEs, TEy), (T=,
ﬁis)} exists (in the meaning of Definition 5).
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THE USE OF FIRST INTEGRALS IN PROBLEMS .
OF SYNTHESIZING OPTIMAL CONTROL SYSTEMS

V.E. BERBYUK

The problem of synthesizing optimal control of the motion of a non-linear
unsteady system is considered. The control quality is evaluated by a
functional of mixed type (a Boltz functional) /1/. A method of synthesiz-
ing optimal control systems is worked out for systems of variational
problems with a fixed time and a free right end, based on the use of
first integrals of the equations of a free uncontrolled object. The
effectiveness of the proposed method is illustrated by examples., The
synthesis problem, i.e. of representing the optimal control as a function
of the system coordinates, has been considered in many publications, for
instance in /1-9/ etc.

1. consider a controllable object whose motion is defined by the equations

£=f(z,t) +b(z,)ulz?) (1.1)
where = = (%3, .. ., Zn) is an n-dimensional vector of the phase coordinates, a dot denotes dif-
ferentiationwith respect to ¢ u=(u;, ..., %) 1is an r-dimensional vector of the controlling
functions, f=(f,.. o fa b=(y) (i =1,...,n j=1,...,r) are an n-dimensional vector function,
and an n X r functional matrix respectively specified on some open set Q of Euclidean space
E,,,, in which the coordinates of a point are the numbers z,,..., z, t. Henceforth we assume
that f, b, u are such that function f, =/f(z, )+ b(z,t)u(x,t) and its partial derivatives
Ofy/0zy (i =1,2,..., n) exist and are continuous in the open set Q.

We call the arbitrary function u (r,¢) that satisfies the conditions on f, (z,t) with
values in the Euclidean space E, the admissible control.

Suppose we are given I, #;, the instants of the beginning and end of the control process
and let the initial state of the object be

z (t) =z, 1.2)
We denote by v (%, 1), ..., 0% (7, 8), k< n the independent first integrals /10/ of the equations
of motion of the free (uncontrolled) object, i.e. of the system of equations
2 =121 1.3)
Let W(y,, ..., Jx) Dbe a given arbitrary differentiable function. We select as the arguments
Ym the first integrals u, (z,t), and consicller the functional
. T n
1 aw X ¢
O=W et + § 3 {ks 3 L& b, 0,0} at + (1.4)
& =1 =1 '
tg T
i uy (z,¢) 92
X[
£, j=1
where v (z,2) = {v; (z, 1), .. ., Uy (2, t)} 1is the vector of first integrals and k,, ..., k, are specified

coefficients.

The first term of the functional (1.4) (the terminal part) is a function of the phase
coordinates at the end of the control process and of finite instant of time {,, the second
defines the properties of the object itself as well as its control system. The third term of
the functional @ can be interpreted as the costs of controlling the motion of the object /9/.

The physical meaning of the first two terms of the quality criterion (1.4) can be revealed
by the specific selection of the function W and the first integrals vny(z,#, For example, when
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