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DYNAMICALLY STABLE PRINCIPLES OF OPTIMALITY 
IN COOPERATIVE DIFFERENTIAL GAIES ON QUICK ACTION OPERATION* 

N.N. DAWILOV 

The class of cooperative differential games on quick-action operation is 
determined, and the principles of optimality in it and questions of 
existence of solutions are,considered. A superadditive characteristic 
set which is theanalogueofa characteristic function in a cooperative 
game is constructed. Theconcept of sharing and of sharing predominance 
is introduced. The principle of dynamic stability is defined in a 
cooperative game on quick-action operation. The theorem on the existence 
of a dynamically stable c-nucleus is proved. The application of the 
proposed treatment of games of group pursuit onquick-action operation is 
considered. 

1. Statement of the problem. The differential game of n players with dependent 
motions is considered. The dynamics of the game are defined by the set of equations 

5' = j (5, ur, . . .) u,), 5 E P, ui E ui c R”t (1.1) 

5 (to) = 50 W) 
where U, is a compact set of,control parameters of the i-th player. 

The admissible control of the i-th player is any measurable function u*(f) that satisfies 
in [to, 00) for any t the condition ut (t)E Uf. 

It is assumed that system (1.1) has a unique solution z(a) continued in the half-interval 

[to, m) for initial data x,, E R"' and any set (ur (t), . . ., u, (t)) of admissible controls. 
Moreover we assume that the vector function j = (fl,...,jm) on the right side of (1.1) can be 
represented in the form j(z,ui, . . . . u,,) = j'(x, ul) + . . . +r(z,u,,). 

As admissible strategies of players we shall consider the piece-wise programme strategies 
(PPS). The (PPS) of the i-th player will be denoted by .+(a) and the set of its (PP.81 by Di. 

The game begins at the instant to from the state ro. The terminal sets M,, . . .,M,, are 
specified in the phase space am. Let (u,(e),..., U,,(a)) be some admissible situation, and 

Z(') =x(*, zo1 u1 (*), *v-v un (*)I be the trajectory of system (l.l)-(1.2) corresponding to that 
situation. 

Definition 1. We call T, = Ti (zo, ul(*), . . ., u,,(s)) the frist instant when the phase point 
reaches the terminal set Mi in the situation (u,(o),..., u,,(e)), if Tt = min {t> to 1 s(t)Ebft). 

Assumption A. The set of admissible situations DN =D1 X . ..X D,, is such that for any 
ordered sequence Ml,,..., ML,, the instants TI,, . . . . Tj, exist and are finite. 

Player i is interested in the phase point reaching the terminal set Mt in the shortest 
possible time, i.e. he aims to minimize the quantity 

Ji (20, u1, . . ., 4 = Tt (50. ulr . . ., w - to (1.3) 
Thus, the differential n-person game on quick-action operation has been defined in the 

normal form r (x0) = (~0; D1, . . .,D,; J,, . . ., .I,). 

2. The characteristic set. We denote by N = (1, . . ., n) the set of all players 
in the game r(z,). Any subset SC N, including the empty set 0 and the set N itself, is 
called a coalition. Let the condition SCN be formed. This means that members of the 

coalition S act as a single player with the set of strategies Ds= nDi which aim to minimize 
ies 

the quantity J, for all iE S. 
The vector J = (Jr,..., J,,), where Jt is the time taken toreachthe terminal set Ml from 

the initial state r. (see (1.3)) is called the payoff vector. For each coalition SE zN we 
denoteby V(S, xo)the set of all payoff vectors in the game r(x,), whose respective components 
the coalition S can guarantee to its members irrespective of the behaviour of the remaining 
players from the set N\ S = {iEN 1 ie S}, including the case least favourable for S,when 
the coalition N\ S works against it. The set V(S,z,) is the characteristic of the potential 
force of coalition S andisthebasisofthedefinitionofa cooperative game. Let us now construct 
the sets V(S. zc,), SE 2x. 

*Prikl.~4atern.Meklmn.,50,1,3-16,1986 
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For the empty coalition 0 we assume 

Y(@, 30) = 0 (2.U 
Let ScN(S# 0) We fix the instant of time r>to, and consider the set of antagonistic 

differential games (rs"(o,, 'F- tO) 1 yE R”} with a fixed duration r - to between the coalitions 
S and N \ S. The dynamics of the game rs" (XO,Z -. to) are described by the equations 

5' = f (5, us, Urv\S), r(to) = 20 (2.2) 

USE II’%, uN\SE n uj 
iES jENl.4 

The payoffsofthe maximizing player has the form K (~0, us, &vu) = --p (z (z), sr), where x (4 

iS the Solution of system (2.2) at the instant r, and p is the Euclidean distance. The payoff' 
of N\ S is equal to K. The value of thegame Yss(ro,r- to) /2/ 

valrs"(zO,T-~o)= sup inf K(so, us(*), sN\s(.))= 
us(') UN\s(‘@N\s 

inf SUP K(ro, Us(*), uN\S(‘)) 
*N1\B(‘)EDN\S uS(.k% 

exists in the class of PPS. 
Consider the set 

Y? (so) = {y E Rm I val r2 (x0, T - to) k 0) (2.3) 

As implied by the value of game rs" (so, a - lo), for point y E EL*(xo) and preassigned 
e>O, the coalition S can guarantee the approach to y in a time r - to to a distance not 
exceeding e. 

Let n be the transformation of every player i in ni and by the same token of each 
coalition S = {in . . ., i.} in the coalition nS = {n&.,.,nCi8}. Each sequence (Mt,iS!S} of 
terminal sets arranged in the order in which they reach the coalition S, generates a trans- 
formation in the coalition S itself. Let the sequence 

Mj,, * . .v Mj,, where jk = & k = 1, . . ., s (2.4) 
correspond to it. 

Let Tz be the first instant of the set Mj,is contacted by the set ~s-~*(x~) as r increases, 
i.e. 

Ti = min (7 1 YF (x0) n Mj, # 01 

If ps-'* (to) n Mj, = 0, r > to, we assume that fl, is equal to + m. To simplify the further 
calculations we shall make the following assumption. 

Assumption B. When T, = Tf is finite, there exists a unique point z1 =x (T,) of first 

touching of the sets Yi-“(2,) and Ml,. 
Then, similarly 

Tn=min(z(Y~-"(xl)nMj,#(a},... 

T, = min {Z 1 YimTa-l (~~-1) n -Wj, # a} 

If Tk = + m, then Tl = + cm for all I = k+ l,...,~. This means than when "going around" 
the terminal sets in accordance with the transformation n, the sets MjL,Mlk+l,...,M,a are 

not reached by coalition S. We thus obtain for IT the sequence G < . . . < $ or, which is the 

same, the sequence Tziz < . . . < pni, of instants of reaching the sets (2.4). 

We introduce the s-vectors Z'", = (Tib, . . . . Tiill), and to = (to, . . ., to) and assume 

Y(S, x0) = (T", - to In E J%J, SC N (S# 0) (2.5) 

where ns is the set of all transformations of the terms of coalition S. The quantity T%,- to 

(the k-th component of the vector T$ - to) has the meaning of the time of reaching the set 
M,, (ikE S) by the coalition S under conditions of transformation n. Note that for SCN V 

(S. x0) is a subset of spaceR*,and its power equals s!, where s is the number of players in 
coalition S. 

Letn be some s-vector. If 5~ V(S,x,) and +nl> g1 for all iE S, we shall assume that 
n E V(S,x,). We define the inclusion C as follows. If for any no A there exists a 5E' 
V (S, x0), such that nt > 51, iE S, then A f? V(S, ~0). 

Let S,RC N, S n R = 0. Let us consider the direct product 

v(s, x0) x V(R, x0) = {(E, q) I5 E V (S, xo)r rl E V (R ~0)) 
which is a subset of space Ii’+‘, where s(r) is the numberofplayers in S (R). The advantage of 
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the coalition S U R over the coalition S and R, if it exists, can be shown by the relation 

v (S u R, 30) 3 V(S, 4 X v (R %) (2.6) 

If (2.6) exists for all S,RcN, S n R = @, we shall call the set V(S,sJ super 
additive with respect to S. 

Lemmdl. The set V defined by (2.1) and (2.5) is superadditive with respect to S. 

Proof. The sets V(S U R,+,) and V(S,z,) x V(R,z,) are subsets of one and the same space 
R'+' hence the relation 4 between the two is determined correctly. Moreover, it is evident 
that (r+ r)l >rlr! and ns x n,cssUR , where ssUR is the set of all transformations in SIJR. 

We set S = (r,, . . ., Ia), R = (II, . . ..j& Let &e V(S,t,)X V (R,z,,) which indicates the existence of 
transformations cp~na and cp =ss* for which 

5 = (I$*,---to, . . .( T+to, T&--to, . . ., T5 -to) 

We arrange the instants to, T&v . . . . fltis, TGjl, . . . . Ttj in increasing order, and obtain the 
I 

sequence 

to<T,fT,B...6T,<= (2.7) 

to which corresponds the sequence of points 

2.8) 

where =(T:&) is the point of first touching of the sets Ya '-rk (Z (I$_,)) and %: The sequence 

(2.8) induces a certain transformation ai=naUR. With the transformation ii the vector E is 
transformed into the vector TIE = (Tl - h,..., T,,- to). 

Consider the coalition SUR, and assume that the sets Mi,L=SU R are ordered (are 
reached) according to the rearrangement 3: 

Ml,* . . ., Mls+r (2.9) 

We Will put ‘1 = (TsuR - 4, 
1 . . ., f$R- to), where TfuR is the first instant, when the set 

MI,, Z,ESU R is reached as a result of the transformation ii. To prove the lemma it is 
sufficient to show that 

tlkdi%,k, k=i,...,r+r (2.10) 
For the transformation ji the points (2.9) are generally not points that first touch the 

sets (2.9), but to prove the inequalities (2.10) it is sufficient to show that the points (2.9) 
will be reached by the coalition 5 UR in a time not exceeding Tl-to,.... T,,- to respectively. 

Let ok be an arbitrary point of the sequence (2.9). We assume that for 1~s we have 
zkE.&,i (for i=R the reasoning is similar). Then by definition rkis the point of first 

touching of the sets YEk-Tk-l(z (TX_,)) and Yi. Here Tk = Tf. since zke Mi for iES, but not always 
Tk_,= Tf-,, since *k-1 E M, is possible, where i E R. Thetimeof conversionofthephasepointfromthe 
state z~_~ to Zk by the efforts of the coalition S is equal to Tk- Tk_,. To this time there 

corresponds a pair of e-optimal strategies (4 (.A "%,a(.)) of the game rik (Q-,, Yk - T,,) (see 
(2.3)). 

Consider now the game T&(z~_~. egx - Tfj'), where TfUR- l+$" is the time of conversion 

of the phase points frcm the state zk_r to the state Zk by the efforts of the coalition Su R. 
The following inequality holds: 

T,, - T,_,> T;UR - T;P (2.11) 

Indeed, let us construct a strategy u&,~(.)= (I$(.), +,a(.)IR), where i,i(.) is the e-optimal 

strategy of the coalition S in the game I$k(zk_r, $- et), and ~&(.)(a is the truncation on 

R of the e-optimal strategy of the coalition N\S in that game. It is obvious that 
~g,,a(.)~Da,,~ and that, applying this strategy, the coalition S (J R transforms the phase point 
from the State zh+ t0 the State Zk in a time not exceeding fl, - Tk+. Moreover, applying the 

strategy DgUR(.), which is e-optimal in the game Y&R(zk_l, I$"" - esiR), the coalition SUR 

transforms the phase point from the state 
=k-1 to the state zk in a time CUR- e_uP, not 

exceeding Tk - Tk, 
From (2.11) with k = 1 we obtain 

T,-to>~ux-t,, (2.12) 



i.e. 91 < %I. From (2.11) with k=& using (2.12), we obtain TfuRg T,, i.e. nr<A%,. Continuing 
this for k=3,...,r+r, we obtain (2.10). Then, since fl E V(S U R,z,), it follows from (2.10) 
that iiE E V(S u R,z,). Because of the arbitrariness of the transformations of.e and*, that 
generate the transformation ii, we obtain that &E V(S U&Z,,). Hence relation (2.6) holds. 

The superadditive set V is called the characteristic set. The determination for each 
coalition SE 2N of the characteristic set V(S,s,) means the determination of the cooperative 
game rv (4 = <N, V (6 4>. The aim of players in the game rv (x0) is to minimize the time 
taken to reach the terminal sets; hence we call the game I'v(zO) the cooperative differential 
game on quick-action operation. 

3. The principle of dynamic stability of solutions in the game rv(zO). First 
we introduce the concept of sharing and of predominance of sharing in the game rv (x0). 

Definition 2. Any vector %E R", that satisfies the conditions: 1) for all iE N we 

have %i < v ({i), 50) i 2) SE VP, 4, called the sharing in the game rv (23. 
We denote the set of all sharings in thisgame I'v (x0) by Ev (I~). 

V (N, ~0). 
It is clear that Ev (xO)C 

Let &E EV (x0), and %s = {%,, i E S}, i.e. %* is an s-dimensional vector composed of com- 
ponents of sharing % that correspond to S. 

Definition 3. We say that the sharing % predominates over the sharing 7 by the coalition 
S(%>s n), if 1) for all iE S we have %i <Q, and 2) %~SE V(S, G,). We say that the sharing 
% predominates over the sharing q (%> n), if a coalition SC N is found such that %>sn. 
Predominance is not possible over coalitions consisting of one player. Actually from %)-in 
it follows that ?h> V({i),xo) which is impossible (see Definition 2)). Note that predominance 
over N is possible. 

Predominance in the sense of Definition 3 can be used to define the c-kernel, the NM 
solution and other concepts of the solutions of the game rv(xo), as is done in classical 
cooperative theory /3/. 

Let WV(X,) CEv (x0) be some solution of the game rv(x,) determined for the state zO. 
Each sharing % = (%I,..., &,) represents the time of reaching in some definite way the ordered 
sequence Mi,, . . . . Mf, of terminal sets. Consequently, to each sharing %E EV (x0) there 

corresponds a trajectory x (.) of system (l.l)-(1.2) such that %k = TdT (x (e)) - i,, where T< (x(e)) 

is the instant of reaching the set Mi,, whenmoving along the trajectory r (.). 

Definition 4. Let WV (I~)# @.--we shall call any trajectory z(.) of system (l.l)-(1.2) 
such that [TN(z (.)) - ~,IEW~ (ro) the conditionally optimal trajectory. Here TN (3 (e)) - t, = 
(T: (f (.)) - to, . ..t T[ (3 (a)) - to). 

We will now formulate the principle of dynamic stability in the game rv (x0). Note that 
for cooperative games with transferable payoffs the concept of dynamic stability was introduced 
in /l/, and for games with non-transferable payoffs in /4, 5/. 

Consider the games in progress I'v (3 (t)) and their solutions WV (3 (t)) c Ev(z (t)) along 
the conditionally optimal trajectory Z (e) Let %'G WV (2 (t)). The component %i' of the sharing 

E' is the time taken to reach the set Mi from the state Z(t) when i E N. It will be 
seen that %{' = 0 for all i such that Tr (Z (a)) < t. We put T = yn; TiN (Z (a)). 

Definition 5. Suppose %E WV (x0), and z(.) is the conditionally optimal trajectory 
such that TN (Z (.)) - t, = 5. The sharing % is called dynamically stable, if WV (3 (0) P 0 
for all to<<<F, and 

% E n _rT (t) f WV (3 @))I 
I.CKT 

r (t) = (r1 (G, * . *, z,, (1)); zi (t) = min {Et, t - to}, i E IV 
In this case the conditionally optimal trajectory is called optimal. 
The solution WV&,) is called the dynamically stable solution of the game rv (2d, if 

all sharings %E WV (so) are dynamically stable. 
In Definition 5 the sum z(t) + WV (Z (t)) i s a set of vectors of the form r(t)+ EL where 

$'(zG$ (0). Consequently, for the dynamically stable sharing %E WV&) a sharing %LE 

V can be found at every instant o f time t E [to, Tl such that % = r (t) i- %'. 
The principle of dynamic stability is the principle of realizability of sharing in the 

differential game. It has the important property that the agreement reached by the players 
at the beginning of the game regarding the sequence and time of reaching terminal sets (sharing 
%E Wv(x0)) is maintained till the end of the game, when moving along the optimal trajectory, 
in other words, it will be realized. 

4. The dynamically stable c-kernel. In what follows we shall understand the set 
Wv(x,) to mean the c-kernel of the game rv (x,), and shall denote it by CV(X~). 

Definition 6. The set of all non-predominating (in the meaning of Definition 3) sharings 
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is called the c-kernel of the game rv(s,). 

Definition 7. The game rv(z,) is called N-substantial, if for all SC N(S# N) and 
z> to and the equation ad'" nM, = 0 is satisfied for at least one iE S. 

Definition 7 and Assumption A imply that in the N-substantial game the terminal sets are 
reached only when the maximal coalition N is formed. 

Theorem 1. In an N-substantial game rv (rO) a non-empty c-kernel Cv (r,)exists. 

Proof. It follows from Assumption A that the set Ev(zo) of sharings in an N-substantial 
game is non-empty. Let &~E&(z~) We assume the existence of the coalition S(S# N), such 
that E>E Then ti<t for alltESandgss V(S,z,) (see Definition 3). By the definition of 

8 

the N-substantial game for all ?)E V(S,zJ and ni= + m for at least one 1 E s. 
for all YES, 

Since Ef<m 
in V(S, zO) does not 'contain a single vector 9 such that ni<gT for all IE S, 

i.e. Es s& V(S, za). and, consequently E cannot predominate over @ in the coalition S. Consider 
now the coalition N. Two cases are possible 1) not a single sharing EE&(z,,) domainates 
over N and 2) a sharing exists which is domainted by N. In the first case C,(z,)= Ev(zO) In 
the second case at least one sharing exists that is not dominated by the coalition N, and 
c,(z,)cB~(z,,). Thus the c-kernel is in both cases non-empty. The theorem is proved 

With the notation domNEv (Q) = {E E Ev @,,)I, we have n E EV (a& rl >.v EL Ev (4 \ 

domNEv 6%) = {E E Ev (x31 E @ domlvEv (q,)}. 
Corollary. In an N-substantial game rv (x,,) Cv (zO) = Ev (zO)\ domN Ev (x0). 

Theorem 2. In an N-substantial game I-v&,) for each conditionally optimal trajectory 
x(.) , all current games rv (z(t)) are N-substantial, then all c-kernels CV (x,,) are dynamically 
stable. 

Proof. Let the sharing & = (Ei,, , . ., Ei,), where 
to the c-kernel. The ordered sequence Mi,....,Mi, 

&Q = T$ - to = Tc (r(a)) - to, k = i, . . ., n belongs 
corresponds to sharing E such that &ik is 

equal to the time of reaching the set MQ by coalition N along the conditionally optimal 
trajectory z(.). 

The points f(T$.. . ..r(Tr) are the points of first touching of the sets 
.;-t. 

n 'N (%), . .I 

N N 

YN T*n-Ti~-l (r (~(-1) and the sets Mi,, e . -7 Mi,. 

Consider the time interval [to, T$ Since for all 
TN-I 

to<:< Tt we have Y~I 
Tx-t. 

(r (t)) '= y;t (%) 

and i (T$E Y, Tcp'(f(t)), where i(T$ is the unique point of touching between Yi* 
TN-i, 

(zO) and Mi I 

(see Assumptions A and B), hence the point z(Tt) remains the unique point of touching between 

the sets YNa T'-t(i(t)) and Mil for all bf t< Tc. Since by the condition of the theorem the game 

Vv (f(t)), t E It,,, T$ , is N-substantial, the sharing &'= (T{- t, k=l,...,n} belongs to the c- 
kernel C, (r(t)). From this 

E = [(t - to) + FL1 E Cv (4, to < t < Tt (4.0 
t = (t, . . .( t), to = (to, . . .( to) 

At the instant t= Tt we have i= 0. 

n 

Consider now the time interval [T&T$. We similarly obtain that the inclusion (4.1) 
holds, where &t~Cv(i(t)) and EL= 0 for all t> T$ and at the instant t= Tc also e;, = 0. 

From this it follows that 

r(t)= (Tt--to, t-b, . . . . t--to), Tfl6t<T; 

I (T;-- t,,, Tc - t,,, t - to, . . ., t-to), 
n--r 

f = Ti'I 

Continuing this reasoning to the instant Tiy, we obtain 

f= n 
l.<KT[ 

[T w; c, (f W)l 



where 5 (t) = (rl (t). . . .,7,(t)), q (t) = min (&iv t - &J. The theorem is proved. 

5. The game of group pursuit on quick-action operation. The method outlined 
here is used below to determine and investigate the cooperative differential game of four 
players on quick-action operation in a formulation close to problems of simple pursuit /6/. 

The game between the pursuers P,, P, and pursued E,,E, occurs in a plane. The players 
move at constant velocities (ai for P, and fil for El) and can change the direction of motion 
at any instant of time. The motions of the pursuers are dependent and defined by the equations 

1.1 = Ul' + u*l, x.2 = ut= + u** (5.1) 

(u# + (4”) = a?, i = 1,2 (5.2) 

The equations of motion of the pursued players E,and E, have the form 
Y" = vll, y” = VI2 (5.3) 
2.1 = US19 z’2 = a 

(VjY + (W = ;;a, 
(5.4) 

j = I,2 (5.5) 
Thus uI = (I$, ui*) is the velocity vector of the pursuers PI and VI =(vll,vl*) of the 

pursued player El., and at each instant of time the position of the pursuants is represented 
by a single point x = (x1,x*), and the position of the pursued E, and En by the points Y = 

(Y'l Y2) and z = (zl,z*) respectively. The motion of the players begin at the instant t, = 0 
from initial positions 

x (to) = x0, Y (to) = Yo, 2 (to) = zo (5.6) 
that do not lie on one straight line. 

The state of information in the game is as follows. At every instant of time the pursuer 
Pt knows his position and the position of player El and the direction of his velocity. The 
pursued player E, knows his position and has information on the position of player Pp 

Let us determine the strategy of the players. The pair (At,&), where A1 is some 

partitioning tf* = 0 < tf’ < . . . < t? < . . . of the half-interval which does not contain finite 
concentration points, and upf is any vector function that has values in the circle (5.2) is 
called the piecewise constant strategy PPS of player Pi. Similarly the PPS of player El(E,) 
consists of a pair (u, up) ((p, v*w)), where u (CL) of some finite partitioning of the time interval 
[0, 00) that has no finite concentration of points, and vp(vp) is any vector function that 
has values in the circle (5.5) for i = 1 (i = 2). 

The strategy PPS (Al, ul*l), (A*, UZ*‘), (u, VP), (p, I@) will be denoted simply by ul, u*, 01, va. 
The programme controls u1 (t), u, (t), v1 (t), vg (t), if they are chosen in the class of piecewise 
constant vector functions. These controls are called programmed strategies. 

Let 5 (., x0, ul, u,), y (., Yo, v,), z(., zo, v*) be the trajectories of system (5.11, (5.3) , and 
(5.4) in the situation (ul,u*,vl,v*) that start from the initial states (5.6). 

We Call T, = T, (x0, y,; ul, u*. vJ the instant of encounter of players P, and E, with 
strategies (u,, u*, v,), if 

T, = min {t > to 1 x (t) = y (t)} 

and T, = T* (x0, z,; u~,u*,v*) the instant of encounter of players P, and E, for strategies 

(u,, u*, V*), if 

(5.7) 

T, = min {t > to Ix (t) = z (t)} (5.8) 

If a time t > to such that x(t) = y(t) (x(t) = z(t)) does not exist, we assume T1(x*,Yo; ~1, 

um VI) (T, (x01 20; u1* u~,v,)) to be equal to + 0~. If T, and T, exist and are finite, we call the 
point x(@) = y (T,)(x(T,) = z(T,)) the point of encounter of players P1(P,) with player E,(E,) 
with strategies (u,, u*, vl) ((ul, u*, v*)). 

Player P, is interested in encountering player El in the shortest time, i.e. he tries 
to minmize T1. Player El tends to prolong the time of encounter with PJ. 

Thus, the four-person on quick-action operation in standard form which we denote by the 
symbol l?(x,, yo,zo) has been defined. 

We will consider the case of cooperation between the pursuers and determinethecharacter- 
istic set V of the cooperative game in conformity with the principle of constructing set 
(2.5). We shall calltheset P = {Pl,P,} the coalition of pursuers. The strategy of coalition 
P is a vector function of the form u = (u,, u*) whose components have values in the circles 
(5.2). The coalition aim is to minimize the components of the vector T = (T,, r,). 

We put a = a, + a,. From (5.1)-(5.5) it follows that if a< p1 (a< p*), then T, = •k 
00 (T, = + co), since in that case the player E, (E,) running away along the straight line that 
passes through points x0 and Y,(z,) can always avoid an encounter with P,(P,). We shall 
therefore assume that 

a > max {L B*) (5.9) 

For any programmed control *I (t) of players E, there exists a unique constant control 
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II =(i&,ti,) of player P which guarantees to him an encounter with E, in minimal time /6/. Such 
control prescribes to him the motion along a beam directed to the point of encounter. Control 
ii is called the quick-action to the point of encounter with E,. A parallel approach to player 

E, (the Hj-strategy) is called the method of pursuit by the coalition P of player E,. 
Thecontrolof the coalition P is identical with the control which guarantees the quick-action 
operation in reaching the point of encounter with El. We denote the rlrstrategyofcoalition 

P by unj = (ulnj, upi). 

We shall call the strategy un = (up, u$) of coalition P the H-strategy, if it assigns 
to player P a parallel approach first with the player E,(E,), and then with the player E,(E,). 

Note that the state of information in the game r&y,,, zO) allows the coalition P to use 
the U-strategy. 

We construct the characteristic sets v(s, 50, Yo, 20)~ SC P. To construct the characteristic 
set V(P,,z,, y,) we shall consider the antagonistic game IIP,IE,(zO,~O) between P, and E, in 
which the player P, aims at minimizing the time of encounter with E,. By Theorem 5/ (/6/ p.27) 
thereisanoptimalIl-strategy for P, and an optimal programmed strategy for E, 

vl*=sl,,;z~,, I II Yo - x0 II = P (x0, Yo) = [(x0’ - yo1y - (203 - yoa)*]"~ 

Since the strategy vl* assigns to player E, to run away from P, along a straight line 
which passes through the points x0 and go, the optimal n-strategy of player P, is the same 
as the strategy of linearized pursuit, i.e. the pursuit is along the straight line of escape 
of E,. Therefore a generalized value exists (see Theorem 4 in /6/ p.25). 

valrPt/El(zOr YO)= 
P (% uo) 

Q-R-p1 

We assume that V(P,,x,, y,)= p(x,, ~,)/(a, - a2 - PI) (see (2.5)). Similarly we obtain V(P,, 

x0, zo) = P (lo, zo)4a, - a1 - M. 
Let us calculatethe characteristic set V(P,x,, y,,z,) on the assumption that the coalition 

P uses the n-strategy. The sequence of pursuit of players E, and E, by coalition P is 
determined by two transformations n, = {E,,E,), and a-c1 = {E,,E,), i.e. the set of all trans- 
formations in P is np = {sl,nl). In carrying out the pursuit in accordance with the trans- 
formation n, the player E, moves along the straight line passing through the points s and 

201 where s is the point of encounter of P and E, (the optimal programmed strategy of player 
E, on the quick-action game IIP,s, (s, z,,)). We denote that strategy of player E, by 5, (s). 
The locus of the points {s = (sl,.@)} of encounter of P and E, in motion with velocities a and 

B 11 and using the coalition P is a circle /i'/. The n,-strategy is a circle of Apollonius 
A+: 

Let us determine to which point 8 of the circle Ali* El must move to obtain the maximum 
time of encounter with P. As shown by Shiryaev /6/ the point S is the solution of the problem 

max (II x0 - sll + II s - zoII ) 
.ZA? 

Hence player El under conditions of transformation a~, mustmove in the direction of the 
point f = (9, Fa). We denote this strategy of E,by 5,. 

Lemma 2. If the order of pursuit of players E, and E, by the coalition P is determined 
by the transformation s, = {E,,E,), then for any v1 and va from (5.5) the inequalities 

T4= TE’ (z,,, l/a; L2.=, 81) < TE’ (x0, y”; 9, ul) 

rE’ = TE*(zo, yo, ~0; G”, 51, Fa) < TE*(xo, ~0, ~0; iin, Zi, ~2) 

are satisfied. Here iin is the n-strategy of the coalition P which assigns to him a parallel 
approach, beginning with E, and, then, with E,; f, = i?,(Z). FE1 denotes the instant of encounter 
of the coalition with player E,. 

The proof of Leunna 2 is similar to the proof of the corresponding inequalities in /6, p. 
61/. 

Consider now the transformation n,. By analogy we establish that player E, moves along 
the straight line passing through the points s and y, in the oppositve direction of s, where 
s is the encounter of P and E,. We denote this strategy of player E, by El(s)). Player E, 
moves towards the point 5 = (!I,$*) (the strategy 3,) of the circle of Apollonius A&. 



max (II 10 - 8 II + II 8 - YO II) = II 50 - f II + II = - YO II 
EA$ 

Lesmna 3. If the order of pursuit of players E,and E, by the coalition P is determined 
by the rearrangement np = {E,,E,}, then, for any vr and v, from (5.5), the inequalities 

‘TEl= TE~(zo, yo, 4; Lin, VI, s) Q T*’ (20, yo, zo; z=, VI, do) 
FE’= EE'(xo, zo; E=, Do) < TE’(rO, zo; W, ve) 

are satisfied, where s is the n-strategy of coalition P which assigns to him, first, a 
parallel approach to E, and, &hen to E,;5,=J, @). The instant of encounter of coalition P 
with player El is denoted by TEj. 

Lemmas 2 and 3 show that the best means of escape forErand E, are the following. With 
the transformation nI player El moves to point ZCZ Alk, while player E, moves to the 
diametrically opposite a side of 5 (Fig.l), and with trnasformation ns player E, moves to 
the point;= A&, and player E, to the diametrically opposite side from a (Fig.1). Hence 
(see (2.5)) 

v (P, x0, yo, zo)= ((FE', P), (FE,, FE*)} 

Since the strategy of players which determine the characteristic sets, assigns to them 
rectilinear motions with constant velocities, the following representations hold: 

In these z'(Y') is the position of player E,(E,) at the instant of encounter with P, and 

E,(E,) at the point S(F) under conditions of transformation n,(n,) (Fig. 1). Since p(S,z') = 

p (g, ZO) + p (20, Z’), p (20, Z’) = fiITE1, and P PI 7) = P6 blo) d- P (Yo, 8)~ P (yo,y) = plTE*, we have 

Fig.1 

where TEa(FE') is the time of encounter of p with E,(El), that corresponds to the transformation 

m Oh). Obviously 
T", < TIE*, 

FE'< FE' .(5.10) 

We shall require the following inequalities to be satisfied: 

(5.12) 

Lemma4. Let conditions (5.11) and (5.12) be satisfied. Then the set V is superadditive 

on SCP, i.e. 

v (P, x0, Yo, zo) 7 v (Pl, 501 Yo) x v (pa, x07 zo) (5.13) 

Proof. Since the set V (PI. zO, u,) x V (p,, zO, zo) consists of a single vector 
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to prove thelemmait is sufficient to show the validity of at least one of the two pairs of 
inequalities 

T"j <qj, 1 = i, 2 (5.14) 

Yj<qj, j= i,2 .(5.15) 

It is evident that inequality (5.14) for j=i follows from (5.10) and (5.11) and for 
i=2 from (5.12). We can also show the validity of inequalities (5.15). 

Theorem 3. If conditions (5.11) and (5.12) are satisfied, then the vectors t = (TEl,T**), 

z = (TG, ps) represent sharings and belong to the c-kernel Cv (xO,yO, zO) of the cooperative 

game r' (X0, Y,, zd. There are no other sharings in the game rv (X0, yo,zo). 

Proof. Since fi,E E V(P,z,,yO ,z,,) from the inequalities (5.14) and (5.15) it follows that 
the vectors f and t are sharings in the game pv(~~,~~,z~). There are no other such vectors. 
The inequality (5.10) implies that the sharings e and g do not dominate one other, i.e. they 
belong to the c-kernel C,(z,,y,,z& 

Definition 8. The trajectory X(e) = 5 (a, X0, 9) (Z(.) = z (., X,,En)) of system (5.1) which 
corresponds to strategy tin (En) of coalition P, i.e. z(t,) =X0, x(Tfi) = 5, x(P*) =X* @((to) = 

X01 P (?s') = 3, P('TE1) ix**), where x* (x**) is the point of encounter between P and E, (E,) 
under conditions of a rci(n*) transformation, when E,(E,) uses the strategy iYs = Fz(y) (El = 
&(a)). In Fig.1 that trajectory is represented by the broken line x0$x* (x,%!x**)), itis called 
the conditionally optimal trajectory. 

Definition 9. If in the motion along the trajectory X(.)@(e)) the sharing f(E) is 
dynamically stable (in the sense of Defintion 5), the trajectory X(e) F(e)) is called the 
optimal trajectory. 

We shall denote the trajectory of system (5.3), (5.4) which corresponds to strategy Fr(&) 
of player E,(E,) used by him under conditions of transformation m1 by I(.)= y(.,yo,a,)(?(.) = 

2, (., aO, Q) , i.e. 0 (to) = yo, B (Trl) = S (i (to) = zo, I (Tss) = XL). In Fig.1 the trajectory g (.) (E (.)) 
is represented by the segment Y~$(z,s*)). 

Let t E [to, FE*). Consider the game rv (z (t), Q (t), f (t)) beginning from the state X (t), # (t), 
f (t). By definition 

As follows from the definition of the U-strategy iin, the segment connecting point 

X 0) and g(t), is parallel to the segment that connects the point x0 and y,for all tE [to, TEs). 
Consequently the locus of the points of encounter of P and E, (the circle of Apollonius A,‘) 
in the game rv (X (t), @ (t). I (t)) is contained inside the circle A,‘* and touches it as the points 
s. Therefore 

where T(t) is a point on the Apollonius circle A,’ such that 
. 

where &'(E,') is the time of encounter between P and El(&) in the game rv (X(t),#(t),Z(t)) 
under conditions of transformation n,,and Fi,*(?j',f) is the time of encounter between P and 
E,(E,) under conditions of transformation ny Obviously 

El'< fir', fn'<f*' 
We.shall require that the following inequality shall be satisfied 

(5.16) 

(5.17) 

We denote by 0 the points of encounter of P,and E, in the game IIP,,sI(X(t),!i(t)). Then 
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Since the player El inthegame ~P,/ET, @ (th Y (t)) attains the maximum time of encounter 
with P, running along the straight line that passes through the points Z(t) and q(t) at 
constant velocity g, hence p(g (t), g)> p (y‘(t),g) (otherwise E, would run in the direction of 
the point s). This implies that p(Z @),#)a p(s(t),F). Consequently 

we obtain 

rV 

h-1 
of 
we 

The inequalities (5.17) and (5.18) show that the vector gf is a sharing in the game 
@(t),Q(t),Z(t)). From inequalities (5.16) it follows that the sharing is not dominated, i.e. 

P E Cv (Z(t), 5 &r(t)), to < t < T" (5.19) 
Consider now the segment [TE*,Tr~l on which the vector ii' is not defined, since player 

is already caught by the coalition P (at the instant P* at the point F) hence the pursuit 
the escapers in accordance with the transformation I, makes no sense. Since at t E [TEl, TE;] 
assume that p@(t), I)= p(J(t),6) = 0, hence the vector 

is a single sharing in the game rv(F(t),# (t), a (t)) and consequently, 

i;' E Cv (z(t), o(t), z(t)), TE' < t < TE' 
The sharing fE CV (lo, y,,, 20) may be represented as follows: 

Since 

(5.18) 

P@ (% EW) f’=(o* (*__fil ) 

(5.20) 

(5.21) 

Hence along the conditionally optimal trajectory Z(m) the sharing 
Cv (x,,y,,zO) is dynamically stable. 

Consider inste_ad of z(.) the conditionally optimal trajectory 
half-interval [to, T"*) 

e belonging to the c-kernel 

.y (.) assuming that in the 

{5.22) 

(here Z(.)(g(.)) are the trajectories of system (5.41, (5.3)) corresponding to the strategy 
a,&) of player E,(E,), applicable under conditions of the transformation n%. Similarly we have 

! 65 r&s [e(t) i- Cv (2 (Qy'(t),i(t))l 
I 

C!.(t) H (e,(t), er (t)), es(t) - t, en(t) = min(PE', t) 
Thus the theorem about the dynamic stability of the c-kernel in the game rv (z,, y,,z,) is 

valid. 
Theorem 4. In the half-interval [to, TEt) suppose condition (5.17) and in the half-interval 

[to, P*) condition (5.22) is satisfied. 
Then in the game rv (xO,FO, zO) a dynamically stable c-kernel Cv(z,, YO,Z,) = {(TE*,TEt), (FE%, 

f%)) exists (in the meaning of Definition 51. 

1. 

2. 

3. 

4. 
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THE USE OF FIRST INTEGRALS IN PROBLEMS 
OF SYNTHES IZING OPTIMAL CONTROL SYSTEMS* 

V.E. BEEBYUK 

The problem of synthesizing optimal control of the motion of a non-linear 
unsteady system is considered. The control quality is evaluated by a 
functional of mixed type (a Bolts functional) /l/. A method of synthesis- 
ing optimal control systems is worked out for systems of variational 
problems with a fixed time and a free right end, based on the use of 
first integrals of the equations of a free uncontrolled object. The 
effectiveness of the proposed method is illustrated by examples. The 
synthesis problem, i.e. of representing the optimal control as a function 
of the system coordinates, has been considered in many publications, for 
instance in /l-9/etc. 

1. Consider a controllable object whose motion is defined by the equations 

x' = f (5, t) + b (2, t) u (2, t) (1.1) 
where z=(zr,..., x,,) is an n-dimensional vector of the phase coordinates, a dot denotes dif- 
ferentiationwithrespect to t; u= (uI, . . . . u,) is an r-dimensional vector of the controlling 
functions, f = (fl, . . ., f,,), b = (b,,) (i = I, . . ., n; j = 1, . . ., r) are an n-dimensional vector function, 
and an n X T functional matrix respectively specified on some open set a of Euclidean space 
E tl+1, in which the coordinates of a point are the numbers xl,...,x,,,t. Henceforth we assume 
that f, b,u are such that function f,, = f(x, t)-l- b(x, t)u(x, t) and its partial derivatives 
af*lax, (i = 1, 2, . . ., n) exist and are continuous in the open set 9. 

We call the arbitrary function u&t) that satisfies the conditions on f, (xv t) with 
values in the Euclidean space E, the admissible control. 

Suppose we are given t,,t,, the instants of the beginning and end of the control process 
and let the initial state of the object be 

5 (Q = % (1.2) 
We denote by v1 (2, t), . . ., vk (x, t), k < n the independent first integrals /lo/ of the equations 

of motion of the free (uncontrolled) object, i.e. of the system of equations 

2' = f (x, t) (1.3) 

Let W (yl, . . ., yk) be a given arbitrary differentiable function. We select as the arguments 
y,,, the first integrals v,(x,t), and consip; the functional 

0 = W (V [X (tr), h]} f + 1 z (kj 2 aw ‘i_fr’ ‘)I bij (Z, t)r dt + (1.4) 
1, j=l i=1 

+,g [ TLp]‘& 

I = 
where v (x, t) = {vl (x, t), . . ., ~+(x,t)} is the vector of first integrals and &,...,k, are specified 
coefficients. 

The first term of the functional (1.4) (the terminal part) is a function of the phase 
coordinates at the end of the control process and of finite instant of time t,, the second 
defines the properties of the object itself as well as its control system. The third term of 
the functional 0 can be interpreted as the costs of controlling the motion of the object /9/. 

The physical meaning of the first two terms of the quality criterion (1.4) can be revealed 
by the specific selection of the function W and the first integrals v,,,(+,t). For example, when 
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